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Abstract: Nitro- and nitrosoarenes can be reduced using baker's yeast (Saccharomyces cerevisiae) under two
distinct sets of conditions, one of which is in fact a well established non-enzymic process. In order to clarify
reports in the literature a comparison of the two methods has been made. © 1997 Elsevier Science Ltd.

Recently there have been a number of reports concerning the use of baker’s yeast (Saccharomyces
cerevisiae) for the reductive cleavage of N-O bonds in a variety of functional groups including nitro arenes’,
nitroalkenes’, nitrosoarenes®, isoxazoles' and N-oxides’. In general the reactions proceed under mild
conditions and may present synthetic advantages in terms of chemo- and regioselectivity. Typically yeast
catalysed reactions are carried out at neutral pH in aqueous media with a substrate concentration of 1-2 mg
ml”. However, inspection of the literature relating to yeast catalysed N-O reductions revealed that two
distinct sets of reaction conditions could be employed for this biotransformation. Whereas most of the
papers '** # % ¥ describe the use of S. cerevisiae at pH 5.5-6.0 and 30 °C with fermenting or non-
fermenting yeast (thereafter called type I conditions), the group of Baik ez al.,'**?** report quite different
reaction conditions, namely reaction temperatures of 70-80 °C and even reflux (sic)*®, high pH (> 12) and
the inclusion of methanol/ethanol in the reaction medium (type II conditions). Even with respect to the
reduction of nitroarenes (vide infra), the two different reaction conditions result in different selectivity, e.g.
under type I conditions electron-withdrawing groups are required for successful reduction '** whereas with
type II conditions electron-donating groups can be tolerated.® This discrepancy suggested to us a
difference in reaction mechanism, especially in view of the fact that the yeast is unlikely to be stable at high
pH and temperature. In this letter we report on our investigations into the likely mechanisms of these two
reductions.
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Scheme 1: Reduction of nitrobenzene and derivatives using S. cerevisiae under type I conditions.
typical conditions: S. cerevisiae (20g), substrate (100 mg), water (100 ml), 30 °C, pH 5.5-6.0.
An indication of the difference between the two sets of conditions can be gained by comparing the

reduction of nitrobenzene 1 (Schemes 1 and 2). Under type I conditions, no reduction of nitrobenzene
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can be detected whereas with type II conditions a 55% yield of aniline 2 is obtained. Use of nitrosobenzene
3 with type I conditions gives a clean conversion to aniline (65%) whereas under type II conditions,
modified by exclusion of the NaOH, the azoxybenzene 5 is detected as an intermediate en route to aniline.
By comparison, azoxybenzene is not reduced under type I conditions. We have also shown that
phenylhydroxylamine 4° can be reduced under type I conditions to give aniline in 55% yield leading us to
propose the sequence of events shown in Scheme 1.
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Scheme 2: Reduction of nitrobenzene and derivatives using S. cerevisiae under type II conditions.
typical conditions: S. cerevisiae (30g), substrate (500 mg), NaOH (4g) (except for nitroso reduction), water (900 ml), methanol
(40 ml), 70-80 °C, pH >12.

In order to gain further insight into the difference between the two sets of conditions we subjected
2.4-dinitroanisole to the reduction. Using our optimised protocol for carrying out these yeast catalysed
reductions’ we obtained a 5.3:1 ratio of 2-amino-4-nitroanisole : 2-nitro-4-aminoanisole in a combined yield
of 95%. However, under type II conditions the reaction was found to be less clean and resulted only in
isolation of 2-amino-4-nitroanisole in a yield of 20%.

In addition to the evidence provided above, the following points should be noted. Firstly, under
type II conditions, it is highly unlikely that the yeast cells remain active during the reaction. Indeed, our
experience has been that the cells appear to coagulate very rapidly presumably followed by cell death and
subsequent inactivation of the enzyme activity under the high pH and high temperature of the medium.
Secondly, it is well known that nitroarenes can be reduced to the corresponding anilines and azoxybenzenes
under strongly basic conditions in solutions that contain simple alcohols and/or glucose or fructose.? It thus
occurred to us that perhaps the S. cerevisiae type II conditions were in fact simply a variation of these
classical conditions and that the yeast was merely acting as an alternative source of carbohydrate.

In order to test this notion we carried out a series of comparative experiments involving the
reduction of nitrobenzene under a variety of conditions as shown in Scheme 3. The principal observation
from these experiments is that the effect of adding glucose to the reaction at the appropriate concentration is
essentially the same as that of adding S. cerevisiae, leading to the conclusion that the function of the yeast is
to act as a source of carbohydrate.
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NaOH (5g), glucose (1g) 11 60
NaOH (5g), glucose (5g) 30 0
NaOH (5g), S. cerevisiae 30 0

Scheme 3: Reduction of nitrobenzene.
conditions: nitrobenzene (1g), water (80 ml), MeOH (40 ml).

We considered the possibility that the use of S. cerevisiae under type II conditions may offer some
advantage over simple addition of glucose in that the carbohydrate may be provided in a slow release form



as the yeast cells degrade. Some support for this proposal was obtained from the reduction of the
nitroarene 6 (Scheme 4). The use of S. cerevisiae resulted in a cleaner reaction (59% of the aniline 7)
compared to the use of glucose/fructose which gave a lower yield of the aniline and a 30% yield of the
quinoxalines 8 and 9. It is noteworthy that nitroaniline 6 was totally inactive under type I conditions
providing further evidence for the difference between type I and II conditions.
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Scheme 4: Reduction of nitroaniline 6.
conditions: substrate (1g), water (80 ml), MeOH (40 ml), NaOH (5g).

The presence of arylhydroxylamines as intermediates in the reduction pathway under type I
conditions has been demonstrated above (Scheme 1) and inferred from previous experiments'® in which it
was found to be possible to reduce 1,2-nitrocyanoarenes to the corresponding 1,2-aminobenzamides,
presumably via the corresponding isoxazoline intermediates (Scheme 5). We have extended this approach
by investigating the reduction of some dicyanonitroarenes and have found that in all cases the nitrile group
ortho- to the cyano group undergoes selective transformation to the benzamide resulting in a means for
selectively manipulating one nitrile group in the presence of another.
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Scheme 5: Conversion of 1,2-nitrocyanoarenes to 1,2-aminobenzamides.

In conclusion it seems clear that the baker’s yeast mediated reduction of nitroarenes and related N-O
containing substrates is best carried out under conditions that maintain the integrity of the yeast thereby
exploiting the inherent enzymic catalytic activity. In our hands, the reactions using type I conditions are
simpler and cleaner and result in higher yields. Regarding the type II conditions it seems that there is no
significant advantage in using baker’s yeast over glucose/NaOH/MeOH for simple nitro reductions.
Moreover, any claims that there are advantages in terms of chemoselectivity (i.e. reduction of nitro groups
in the presence of ketones™) are almost certainly due to the destruction of all enzyme activity under the
reaction conditions used leading to non-enzymic processes only. It is noteworthy that previous claims of
baker’s yeast mediated reactions have subsequently been revised by others in the light of more carefully
executed experiments with the appropriate controls.’
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